
ESTIMATING RATES OF FAULT INSERTION AND TEST
EFFECTIVENESS IN SOFTWARE SYSTEMS

John C. Munson
Computer Science Department

University of Idaho

jmunson @cs.uidaho.edu
MOSCOW, ID 83844-1010

Allen P. Nikora
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91 109-8099
anikora@pop.ipl.nasa..gov

ABSTRACT

In developing a software system, we would like to estimate the total number of faults in-

serted into a software system, the residual fault content of that system at any given time, and the

efficacy of the testing activity in executing the code containing the newly inserted faults. Prior

to test, however, there may be very little direct information regarding the number and location of

faults. This lack of direct information requires the development of a fault surrogate from which

the number of faults and their location can be estimated. We develop a fault surrogate based on

changes in relative complexity, a synthetic measure which has been successfully used as a fault

surrogate in previous work. We show that changes in the relative complexity can be used to es-

timate the rates at which faults are inserted into a system between successive revisions. These

rates can be used to continuously monitor the total number of faults inserted into a system. Fi-

nally, we develop a method for determining test effectiveness based on the measuring the pro-

portion of testing activity devoted to exercising those areas of the system that have changed since

the last version.

1. INTRODUCTION

Over a number of years of study, we can now establish a distinct relationship between

software faults and certain aspects of software complexity. When a software system consisting

of many distinct software modules is built for the first time, we have little or no direct informa-

tion as to the location of faults in the code. Some of the modules will have far more faults in

them than do others. We do, however, now know that the number of faults in a module is highly

correlated with certain software attributes that may be measured. This means that we can meas-

ure the software on these specific attributes and have some reasonable notion as to the degree to

which the modules are fault prone [Muns90, Muns961.

mailto:cs.uidaho.edu
mailto:anikora@pop.ipl.nasa..gov

-2-

In the absence of information as to the specific location of software faults, we have suc-

cessfully used a derived metric, the relative complexity measure, as a fault surrogate. That is, if

the relative complexity value of a module is large, then it will likely have a large number of la-

tent faults. If, on the other hand, the relative complexity of a module is small, then it will tend to

have fewer faults. As the software system evolves through a number of sequential builds, faults

will be identified and the code will be changed in an attempt to eliminate the identified faults.

The introduction of new code, however, is a fault prone process just as was the initial code gen-

eration. Faults may well be injected during this evolutionary process.

Code does not always change just to fix faults that have been isolated in it. Some

changes to code during its evolution represent enhancements, design modifications or changes in

the code in response to continually evolving requirements. These incremental code enhance-

ments may also result in the injection of still more faults. Thus, as a system progresses through a

series of builds, the relative complexity fault surrogate of each program module that has been

altered must also change. We will see that the rate of change in relative complexity will serve as

a good index of the rate of fault injection.

Once the rate of fault insertion has been established, it becomes possible to estimate the

number of faults remaining in the system at any point during the development. Since we use

changes in relative complexity as an index of the fault insertion rate, it becomes possible to esti-

mate number of residual faults at the module level, in which a module is taken to be a procedure,

function, or method. This information is useful to software development managers wishing to

estimate the resources required to remove the remaining faults - not only can the number of re-

maining faults be estimated, but it is possible to direct fault detection and removal resources at

those portions of the software estimated to have the highest concentrations of residual faults.

However, this is only half of the picture - once the software is operating in the field, we wish to

estimate its reliability. The estimated number of residual faults, a static measure, must be trans-

formed into an estimate of the system’s dynamic behavior.

The general notion of software test is that rate of fault removal will generally exceed the

rate of fault injection. In most cases, this is probably true [Muns97]. Some changes are rather

more heroic than others. During these more substantive change cycles, it is quite possible that

the actual number of faults in the system will rise. We would be very mistaken, then, to assume

that software test will monotonically reduce the number of faults in a system. This will only be

the case when the rate of fault removal exceeds the rate of fault injection. The rate of fault re-

-3-

moval is relatively easy to measure. The rate of fault injection is much more tenuous. This fault

injection process is directly related to two measures that we can take on code as it evolves, code

change and code churn.

In this investigation we will establish a methodology whereby code can be measured

from one build to the next, a measurement baseline. We will use this measurement baseline to

develop an assessment of the rate of change to a system as measured by our relative complexity

fault surrogate. From this change process we will then be able to derive a direct measure of the

rate of fault injection based on changes in the software from one build to the next. We examine

data from an actual system on which faults may be traced to specific build increments to assess

the predicted rate of fault injection with the actual. Finally, we will develop a method of meas-

uring the efficiency of a test activity.

To estimate rates of fault insertion, it is necessary to identify a complete software system

on which every version of every module has been archived together with the faults that have

been recorded against the system as it evolved. Of the two systems we analyzed for this study,

the Cassini Orbiter Command and Data Subsystem at JPL met all of our objectives. On the first

build of this system there were approximately 96K source lines of code in approximately 750

program modules. On the last build there were approximately 1 10K lines of source code in ap-

proximately 800 program modules. As the system progressed from the first to the last build

there were a total of 45,200 different versions of these modules. On the average, then, each

module progressed through an average of 60 evolutionary steps or versions. For the purposes of

this study, the Ada program module is a procedure or function. it is the smallest unit of the Ada

language structure that may be measured. A number of modules present in the first build of the

system were removed on subsequent builds. Similarly, a number of modules were added.

The Cassini CDS does not represent an extraordinary software system. It is quite typical

of the amount of change activity that will occur in the development of a system on the order of

100 FLOC. It is a non-trivial measurement problem to track the system as it evolves. Again,

there are two different sets of measurement activities that must occur at once. We are interested

the changes in the source code and we are interested in the fault reports that are being filed

against each module.

To determine the efficiency of a test activity, it is necessary to have a system in which

structural changes between one increment and its predecessor can be measured together with the

execution profile observed during test. Since we were unable to accomplish this last for the

-4-

CASSINI CDS flight software, we studied the real-time software for a commercial embedded

system.

2. A Measurement Baseline

The measurement of an evolving software system through the shifting sands of time is

not an easy task. Perhaps one of the most difficult issues relates to the establishment of a base-

line against which the evolving systems may be compared. This problem is very similar to that

encountered by the surveying profession. If we were to buy a piece of property, there are certain

physical attributes that we would like to know about that property. Among these properties is

the topology of the site. To establish the topological characteristics of the land, we will have to

seek out a benchmark. This benchmark represents an arbitrary point somewhere on the subject

property. The distance and the elevation of every other point on the property may then be estab-

lished in relation to the measurement baseline. Interestingly enough, we can pick any point on

the property, establish a new baseline, and get exactly the same topology for the property. The

property does not change. Only our perspective changes.

When measuring software evolution, we need to establish a measurement baseline for the

same purpose described above [Niko97, Muns96aI. We need a fixed point against which all oth-

ers can be compared. Our measurement baseline also needs to maintain the property that, when

another point is chosen, the exact same picture of software evolution emerges, only the perspec-

tive changes. The individual points involved in measuring software evolution are individual

builds of the system.

Standardizing metrics for one particular build is simple. For each metric obtained for

each module, subtract from that metric its mean and divide by its standard deviation. This puts

all of the metrics on the same relative scale, with a mean of zero and a standard deviation of one.

This works fine for comparing modules within one particular build. But when we standardize

subsequent builds using the means and standard deviations for those builds a problem arises.

The standardization masks the change that has occurred between builds. In order to place all the

metrics on the same relative scale and to keep from losing the effect of changes between builds,

all build data is standardized using the means and standard deviations for the metrics obtained

from the baseline system. This preserves trends in the data and lets measurements from different

builds be compared.

-5-

For each raw metric in the baseline build, we may compute a mean and a standard devia-

tion. Let us denote the vector of mean values for the baseline build as X B and the vector of stan-

dard deviations as sB . The standardized baseline metric values for any module j in an arbitrary

build i, then, may be derived from raw metric values as

B i wj - x j B,i "B

z ; ' = n
I si"

The process of standardizing the raw metrics certain makes them more tractable. Among

other things, it now permits the comparison of metric values from one build to the next. This

standardization does not solve the main problem. There are too many metrics collected on each

module over many builds. We need to reduce the dimensionality of the problem. We have suc-

cessfully used principal components analysis for reducing the dimensionality of the problem

[Muns90a, Khos921. The principal components technique will reduce a set of highly correlated

metrics to a much smaller set of uncorrelated or orthogonal measures. One of the products of the

principal components technique is an orthogonal transformation matrix T that will send the stan-

dardized scores (the matrix z) onto a reduced set of domain scores thusly, d = zT .

In the same manner as the baseline means and standard deviations were used to transform

the raw metric of any build relative to a baseline build, the transformation matrix TB derived

from the baseline build will be used in subsequent builds to transform standardized metric values

obtained from that build to the reduced set of domain metrics as follows: dB*' = zB3' T B . where

zB9' are the standardized metric values from build i baselined on build B .
Another artifact of the principal components analysis is the set of eigenvalues that are

generated for each of the new principal components. Associated with each of the new measure-

ment domains is an eigenvalue, 2 . These eigenvalues are large or small varying directly with

the proportion of variance explained by each principal component. We have successfully ex-

ploited these eigenvalues to create a new metric called relative complexity, p , that is the

weighted sum of the domain metrics to wit:
nr

pi = 5 0 + 1 0 ~ a , d j

where rn is the dimensionality of the reduced metric set [Muns90a].

-6-

As was the case for the standardized metrics and the domain metrics, relative complexity

may be baselined as well using the eigenvalues and the baselined domain values as follows:

If the raw metrics that are used to construct the relative complexity metric are carefully

chosen for their relationship to software faults then the relative complexity metric will vary in

exactly the same manner as the faults [Muns95]. The relative complexity metric in this context

is a fault surrogate. Whereas we cannot measure the faults in a program directly we can measure

the relative complexity of the program modules that contain the faults. Those modules having a

large relative complexity value will ultimately be found to be those with the largest number of

faults [Muns92].

3. SOFTWARE EVOLUTION

As a software system grows and modifications are made, the modules that comprise the

system are recompiled and a new version, or build, is created. Each build is constructed from a

distinct set of these software modules, though not always exactly the same ones. The new ver-

sion may contain some of the same modules as the previous version, some entirely new modules

and it may even omit some modules that were present in an earlier version. Of the modules that

are common to both the old and new version, some may have undergone modification since the

last build. The set of modules that constitute the system on any one build is subject to material

change over the life of the system.

3.1 Module Sets and Versions

When evaluating the change that occurs to the system between any two builds i, andj, we

are interested in three sets of modules. The first set, M:,’, is the set of modules present in both

builds of the system. These modules may have changed since the earlier version but were not

removed. The second set, M :] , is the set of modules that were in the early build and were re-

moved prior to the later build. The final set, M :] , is the set of modules that have been added to
. .

the system since the earlier build.

As an example, let build i consist of the following set of modules.

-7-

Between build i andj module m3 is removed giving

Then between builds j and k two new modules, m7 and m, are added and module m2 is deleted

giving

For the builds i, andj the set

With a suitable baseline in place, and the module sets defined above, it is now possible to

measure software evolution across a full spectrum of software metrics. We can do this first by

comparing average metric values for the different builds. Secondly, we can measure the increase

or decrease in system complexity as measured by a selected metric, code delta, or we can meas-

ure the total amount of change the system has undergone between builds, code churn.

We can now see that establishing the complexity of a system across builds in the face of

changing modules and changing sets of modules is in itself a very complex problem. In terms of

the example above, the relative complexity of the system RB3' at build i, the early build, is given

by

m,.t M

where p,"" is the relative complexity of module m, on this build baselined by build B.

Similarly, the relative complexity of the system R"" at buildj, the later build is given by

The later system build is said to be more complex if RB" > RE,' .

Regardless of which metric is chosen, the goal is the same. We wish to assess how the system

has changed, over time, with respect to that particular measurement. The concept of a code delta

provides this information. A code delta is, as the name implies, the difference between two

builds as to the relative Complexity metric.

-8-

3.2 Code Churn and Code Deltas

The change in the relative complexity in a single module between two builds may be

measured in one of two distinct ways. First, we may simply compute the simple difference in

the module relative complexity between build i and buildj. We will call this value the code delta

for the module mu, or fi;,’ = p, p , . The absolute value of the code delta is a measure of

code churn. In the case of code churn, what is important is the absolute measure of the nature

that code has been modified. From the standpoint of fault insertion, removing a lot of code is

probably as catastrophic as adding a bunch. The new measure of code churn, x , for module m,

.~ B , j - B , i

The total net change of the system is the sum of the code delta’s for a system between

two builds i andj is given by

in,€ M ‘

With a suitable baseline in place, and the module sets defined above, it is now possible to

measure software evolution across a full spectrum of software metrics. We can do this first by

comparing average metric values for the different builds. Secondly, we can measure the increase

or decrease in system complexity as measured by a selected metric, code delta, or we can meas-

ure the total amount of change the system has undergone between builds, code churn.

A limitation of measuring code deltas is that it doesn’t give an indicator as to how much

change the system has undergone. If, between builds, several software modules are removed and

are replaced by modules of roughly equivalent complexity, the code delta for the system will be

close to zero. The overall complexity of the system, based on the metric used to compute deltas,

will not have changed much. However, the reliability of the system could have been severely

effected by the process of replacing old modules with new ones. What we need is a measure to

accompany code delta that indicates how much change has occurred. Code churn is a measure-

ment, calculated in a similar manner to code delta, that provides this information. The net code

churn of the same system over the same builds is

-9-

When several modules are replaced between builds by modules of roughly the same

complexity, code delta will be approximately zero but code churn will be equal to the sum of the

value of p for all of the modules, both inserted and deleted. Both the code delta and code churn

for a particular metric are needed to assess the evolution of a system.

4. OBTAINING AVERAGE BUILD VALUES

One synthetic software measure, relative complexity, has clearly been established as a successful

surrogate measure of software faults [Muns90a]. It seems only reasonable that we should use it

as the measure against which we compare different builds. Since relative complexity is a com-

posite measure based on the raw measurements, it incorporates the information represented by

LOC, V(g), q, , q2 , and all the other raw metrics of interest. Relative complexity is a single

value that is representative of the complexity of the system which incorporates all of the com-

plexity attributes we have measured (e.g. size, control flow, style, data structures, etc.).

By definition, the average relative complexity, p , of the baseline system will be

where N B is the cardinality of the set of modules on build B, the baseline build. Relative com-

plexity for the baseline build is calculated from standardized values using the mean and standard

deviation from the baseline metrics. The relative complexities are then scaled to have a mean of

50 and a standard deviation of 10. For that reason, the average relative complexity for the base-

line system will always be a fixed point. Subsequent builds are standardized using the means

and standard deviations of the metrics gathered from the baseline system to allow comparisons.

The average relative complexity for subsequent builds is given by

where N k is the cardinality of the set of program modules in the kfh build and pBTk is the base-

Pined relative complexity for the ith module of that set.

The total relative complexity, RQ , of a system on its initial build is simply the sum of a11

relative complexities of each module of the initial system,

-10-

N

R0 = C p y .
i=l

The principle behind relative complexity is that it serves as a fault surrogate. That is, it

will vary in precisely the same manner as do software faults. The fault potential of a particu-

lar module i is directly proportional its value of the relative complexity fault surrogate. Thus,

To derive a preliminary estimate for the actual number of faults per module we may

make judicious use of historical data. From previous software development projects it is possi-

ble to develop a proportionality constant, say k, that will allow the total system relative com-

plexity to map to a specific system fault count as follows: F 0 = kRo or Ro = k / F o . Substituting

for R in the previous equation, we find that

Thus, our best estimate for the number of faults in module i in the initial configuration of the

system is
0 0 0 g i =r;. F .

After an interval of testing a number of faults will be found and fixes made to the code to

remedy the faults. Let F J be the total number of faults found in the total system up to and in-

cluding the j'" build of the software. In a particular module i there will be J.' faults found in

the first build that are attributable to this module. The estimated number of faults remaining in

module i will then be
1 0 1

gi = g i - . f i 7

assuming that we Rave only fixed faults in the code and not added any new ones.

Our ability to locate the remaining faults in a system will relate directly to our exposure

to these faults. If, for example, at the j" build of a system there are g / remaining faults in

module i , we can not expect to identify any of these faults unless some test activity is allocated

to exercising module i.

As the code is modified over time, faults will be found and fixed. However, new faults

will be introduced into the code as a result of the change. In fact, this fault injection process is

- I 1 -

directly proportional to change in the program modules from one version to the next. As a mod-

ule is changed from one build to the next in response to evolving requirements changes and fault

reports, its complexity will also change. Generally, the net effect of a change is that complexity

will increase. Only rarely will its complexity decrease. It is now necessary to describe the

measurement process for the rate of change in an evolving system.

5. SOFTWARE EVOLUTION AND THE FAULT INJECTION PROCESS

Initially, our best estimate for the number of faults in module i in the initial configuration

of the system is

g j = q F . 0 0 0

As the ith module was tested during the test activity of the first build, the number of faults found

and fixed in this process was denoted by f,‘ . However, in the process of fixing this fault, the

source code will change. In all likelihood, so, too, will the relative complexity of this module.

Over a sequence of builds, the complexity of this module may change substantially. Let,

represent the net change in relative complexity to the it* module over the firstj builds. Then the

cumulative churn in the total system over thesej builds will be,

where N l is the cardinality of the set of all modules that were in existence over these j builds.

The complexity of the ith module will have changed over this sequence of builds. Its new value

will be pi +A:,”. Some changes may increase the relative complexity of this module and others

may decrease it. A much better (as will be demonstrated) measure of the cumulative change to

the system will be pi + Vy*J. The system complexity, R, will also have changed. Its new value

will be Ro +Ao*.’ (.

On the initial build of the system the initial burden of faults in a module was proportional

to the relative complexity of the module. As the build cycle continues the rate of fault injection

is most closely associate with the code churn. Thus, the proportion of faults in the i‘” module

- 1 2-

will have changed over the sequence of j builds, related to its initial relative complexity and its

subsequent code churn. Its new value will be

(PO +vpq y.’ = / ; / R o +VO*J)

We now observe that our estimate of the number of faults in the system has now changed.

On the j t h build there will no longer be Fo faults in the system. New faults will have been in-

troduced as the code has evolved. In all likelihood, the initial software development process and

subsequent evolution processes will be materially different. This means that there will be a dif-

ferent proportionality constant, say k” representing the rate of fault injection for the evolving

system. For the total system, then, there will have been FJ = kRo + k’Ao9j faults introduced into

the system from the initial build through the j r h build. Each module will have had

h/ = qJFjfaults introduced in it either from the initial build or on subsequent builds. Thus, our

revised estimated of the number of faults remaining in module i on buildj will be

g,/ =hl - A ’ .
The rate of fault insertion is directly related to the change activity that a module will re-

ceive from one build to the next. At the system level, we can see that the expected number of

injected faults from buildj to buildj+l will be

FJ“ - FJ = kRo + k’Vo*.j’’ - kRo + k’Vo”

- - k’(VOs.1” - Vo.1)
- - k‘VjJ+‘

At the module level, the rate of fault injection will, again, be proportional to the level of change

activity. Hence, the expected number of injected faults between buildj to buildj+d on module i

will be simply hi,’ -h i .

The two proportionality constants k and k’ are the ultimate criterion measures of software

development process and software maintenance processes. Each process has an associated fault

injection proportionality constant. If we institute a new software development process and ob-

serve a significant change downward in the constant k, then the change would have been a good

one. Very frequently, however, software processes are changed because development fads

change and not because a criterion measure has indicated that a new process is superior to a pre-

' .

- I 3-

vious one. We will consider that an advance in software development process has occurred if

either k or k' has diminished for that new process.

6. DEFINITION OF A FAULT

Unfortunately there is no particular definition of just precisely what a software fault is. In the

face of this difficulty it is rather hard to develop meaningful associative models between faults

and metrics. In calibrating our model, we would like to know how to count faults in an accurate

and repeatable manner. In measuring the evolution of the system to talk about rates of fault in-

troduction and removal, we measure in units to the way that the system changes over time.

Changes to the system are visible at the module level, and we attempt to measure at that level of

granularity. Since the measurements of system structure are collected at the module level (by

module we mean procedures and functions), we would like information about faults at the same

granularity. We would also like to know if there are quantities that are related to fault counts

that can be used to make our calibration task easier.

Following the second definition of fault in [IEEE83, IEEE881, we consider a fault to be a

structural imperfection in a software system that may lead to the system's eventually failing.

In other words, it is a physical characteristic of the system of which the type and extent may be

measured using the same ideas used to measure the properties of more traditional physical sys-

tems. Faults are introduced into a system by people making errors in their tasks - these errors

may be errors of commission or errors of omission.

In order to count faults, we needed to develop a method of identification that is repeat-

able, consistent, and identifies faults at the same level of granularity as our structural measure-

ments. In analyzing the flight software for the CASSINI project the fault data and the source

code change data were available from two different systems. The problem reporting information

was obtained from the JPL institutional problem reporting system. For the software used in this

study, failures were recorded in this system starting at subsystem-level integration, and continu-

ing through spacecraft integration and test. Failure reports typically contain descriptions of the

failure at varying levels of detail, as well as descriptions of what was done to correct the fault(s)

that caused the failure. Detailed information regarding the underlying faults (e.g.> where were

the code changes made in each affected module) is generally unavailable from the problem re-

porting system.

- 14-

The entire source code evolution could be obtained directly from the Software Configu-

ration Control System (SCCS) files for all versions of the flight software. The way in which

SCCS was used in this development effort makes it possible to track changes to the system at a

module level in that each SCCS file stores the baseline version of that file (which may contain

one or more modules) as well as the changes required to produce each subsequent increment

(SCCS delta) of that file. When a module was created, or changed in response to a failure report

or engineering change request, the file in which the module is contained was checked into SCCS

as a new delta. This allowed us to track changes to the system at the module level as it evolved

over time. For approximately 10% of the failure reports, we were able to identify the source file

increment in which the fault(s) associated with a particular failure report were repaired. This in-

formation was available either in the comments inserted by the developer into the SCCS file as

part of the check-in process, or as part of the set of comments at the beginning of a module that

track its development history.

Using the information described above, we performed the following steps to identify

faults:

For each problem report, search all of the SCCS files to identify all modules and the in-

crement(s) of each module for which the software was changed in response to the prob-

lem report.

For each increment of each module identified in step 1 , start with the assumption that all

differences between the increment in which repairs are implemented and the previous in-

crement are due solely to fault repair. Note that this is not necessarily a valid assumption

- developers may be making functional enhancements to the system in the same incre-

ment that fault repairs are being made. Careful analysis of failure reports for which there

was sufficiently detailed descriptive information served to separate areas of fault repair

from other changes. However, the level of detail required to perform this analysis was

not consistently available.

0 Use a differential comparator (e.g., Unix d i f f) to obtain the differences between the in-

crement(s) in which the fault(s) were repaired, and the immediately preceding incre-

ment(s). The results indicated the areas to be searched for faults.

After completing the last step, we still had to identify and count the faults - the results of

the differential comparison cannot simply be counted up to give a total number of faults. In or-

-15-

der to do this, we developed a taxonomy for identifying and counting faults [Niko98]. This tax-

onomy differs from others in that it does not seek to identify the root cause of the fault. Rather,

it is based on the types of changes made to the software to repair the faults associated with fail-

ure reports - in other words, it constitutes an operational definition of a fault. Although identi-

fying the root causes of faults is important in improving the development process [Chi192,

IEEE931, it is first necessary to identify the faults. We do not claim that this is the only way to

identify and count faults, nor do we claim that this taxonomy is complete. However, we found

that this taxonomy allowed us to successfully identify faults in the software used in the study in a

consistent manner at the appropriate level of granularity.

7. THE RELATIONSHIP BETWEEN FAULTS AND CODE CHANGES

Having established a theoretical relationship between software faults and code changes, it is

now of interest to validate this model empirically. This measurement occurred on two simulta-

neous fronts. First, all of the versions of all of the source code modules were measured. From

these measurements, code churn and code deltas were obtained for every version of every mod-

ule. The failure reports were sampled to lead to specific faults in the code. These faults were

classified according to the above taxonomy manually on a case by case basis. Then we were

able to build a regression model relating the code measures to the code faults.

The Ada source code modules for all versions of each of these modules were systemati-

cally reconstructed from the SCCS code deltas. Each of these module versions was then meas-

ured by the UX-Metric analysis tool for Ada [SETL93]. Not all metrics provided by this tool

were used in this study. Only a subset of these actually provide distinct sources of variation

[Khos90]. The specific metrics used in this study are shown in Table 1.

To establish a baseline system, all of the metric data for the module versions that were

members of the first build of CDS were then analyzed by our PCA-RCM tool. This tool is de-

signed to compute relative complexity values either from a baseline system or from a system

being compared to the baseline system. In that the first build of the Cassini CDS system was

selected to be the baseline system, the PCA-RCM tool performed a principal components analy-

sis on these data with an orthogonal varimax rotation. The objective of this phase of the analysis

is to use the principal components technique to reduce the dimensionality of the metric set. As

may been seen in Table 2, there are four principal components for the 18 metrics shown in Table

-1 6-

1 . For convenience, we have chosen to name these principal components as Size, Structure,

Style and Nesting. From the last row in Table 2 we can see that the new reduced set of orthogo-

nal components of the original 18 metrics account for approximately 85% of the variation in the

original metric set.

Metrics Definition

7 7 1

777

Count of unique operators [Ha1771

N2 Count of total operands

Count of total operators N ,

Count of unique operands

P/R Purity ratio: ratio of Halstead’s to total program vocabulary
McCabe’s cyclomatic complexity

Depth Maximum nesting level of program blocks

AveDeptk Average nesting ‘level of program blocks
LOC Number of lines of code

I
Blk / Number of blank lines
Cmt

LSS
Count of executable statements Stmts
Total words used in all comments CmtWds
Count of comments

Number of logical source statements
I -

PSS I Number of physical source statements

Table 1. Software Metric Definitions

As is typical in the principal components analysis of metric data, the Size domain domi-

nates the analysis. It alone accounts for approximately 38% of the total variation in the original

metric set. Not surprisingly, this domain contains the metrics of total statement count (Stmts),

logical source statements (LSS), the Halstead lexical metric primitives of operator and operand

count, but it also contains cyclomatic complexity (V(g)). In that we regularly find cyclomatic

complexity in this domain we are forced to conclude that it is only a simple measure of size in

the same manner as statement count. The Structure domain contain those metrics relating to

the physical structure of the program such as non-executable statements (NonEx) and the pro-

gram block count (Blk). The Style domain contains measures of attribute that are directly under

-17-

a programmer’s control such as variable length (VZ) and purity ratio (P/R). The Nesting domain

consist of the single metric that is a measure of the average depth of nesting of program modules

(AveDepth).

Table 2. Principal Components of Software Metries

In order to transform the raw metrics for each module version into their corresponding

relative complexity values, the means and the standard deviations must be computed. These are

shown in Table 3. These values will be used to transform all raw metric values for all versions

of all modules to their baselined z score values. The last four columns of Table 3 contain the

actual transformation matrix that will map the metric z score values onto their orthogonal

equivalents to obtain the orthogonal domain metric values used in the computation of relative

complexity. Finally, the eigenvalues for the four domains are presented in the last row of this

table.

- 1 8-

Table 3, then contains all of the essential information needed to obtain baselined relative

complexity values for any version of any module relative to the baseline build. As an aside, it is

not necessary that the baseline build be the initial build. As a typical system progresses through

hundreds of builds in the course of its life, it is well worth reestablishing a baseline closer to the

current system. In any event, these baseline data are saved by the PCA-RCM tool for use in later

computation of metric values. Whenever the tool is invoked referencing the baseline data it will

automatically use these data to transform the raw metric values given to it.

Domain3 I Domain4 I

Table 3. Baseline Transformation Data

In relating the number of faults inserted in an increment to measures of a module’s

structural change, we had only a small number of observations with which to work. Problem re-

ports could not be consistently traced back to source code, and there were numerous modules for

which UX-Metric did not report measurements. The net result was that of the over 100 faults

-19-

that were initially identified, there were only 35 observations in which a fault could be associated

with a particular increment of a module, and with that increment’s measures of code delta and

code churn.

For each of the 35 modules for which there was viable fault data, there were three data

points. First, we had the number of injected faults for that module that were the direct result of

changes that had occurred on that module between the current version that contained the faults

and the previous version that did not. Second, we had code delta values for each of these mod-

ules from the current to the previous version. Finally, we had code churn values derived from

the code deltas.

Linear regression models were computed for code churn and code deltas with code faults

as the dependent variable in both cases. Both models were build without constant terms in that

we surmise that if no changes were made to a module, then no new faults could be introduced.

The results of the regression between faults and code deltas were not at all surprising. The

squared multiple R for this model was 0.001, about as close to zero as you can get. This result is

directly attributable to the non-linearity of the data. Change comes in two flavors. Change may

increase the complexity of a module. Change may decrease the complexity of a model. Faults,

on the other hand are not related to the direction of the change but to its intensity. Removing

masses of code from a module is just as likely to introduce faults and adding code to it.

The regression model between code churn and faults is dramatically different. The re-

gression ANOVA for this model are shown in Table 4. Whereas code deltas do not show a lin-

ear relationship with faults, code churn certainly does. The actual regression model is given in

Table 5. In Table 6 the regressions statistics have been reported. Of particular interest is the

Squared Multiple R term. This has a value of 0.649. This means, roughly, that the regression

model will account for more that 65% of the variation in the faults of the observed modules

based on the values of code churn.

Table 4. Regression Analysis of Variance

Table 5. Regression Model

-20-

Squared Standard
N error of multiple R Multiple R

estimate
35 2.296 0.649 0.806

Table 6. Regression Statistics

Of course, it may be the case that both the amount of change and the direction in which

the change occurred. The linear regression through the origin shown in Tables 7, 8, and 9 below

illustrates this particular regression model.

Table 7. Regression Analysis of Variance

Effect

0.002 2.849 0.07 1 0.201 Delta
0.000 9.172 0.07 I 0.647 Churn

P(2-Tail) t Std Error Coefficient

Table 8. Regression Model

Squared Standard
N error of multiple R Multiple R

estimate
35 2.087 .719 348

Table 9. Regression Statistics

Tables 5 and 8 contain our estimates for the constant k relating the rate of fault insertion to the

measured structural change, measured by code churn and code delta. We see that the model in-

corporating code delta as well as code churn performs significantly better than the model incor-

porating code churn alone, as measured by Squared Multiple R and Mean Sum of Squares.

8. TESTING OBJECTIVES

Deterministically testing a large software system is virtually impossible. Trivial systems,

on the order of 20 or 30 modules, often have far too many possible execution paths for complete

deterministic testing. This being the case, we must revisit what we hope to accomplish by testing

the system. Is our goal to remove all of the faults within the code? If this is our goal, how do we

know when we have them all? What is it worth, in terms of expense, to try to find one more

fault? Given unlimited time and resources, identification and removal of all faults might be a

-21 -

noble goal, but real world constraints make this largely unattainable. The problem is that we

must provide an adequate level of reliability in light of the fact that we cannot find and remove

all of the faults. Through the use of software measurement, we hope to identify which modules

contain the most faults and, based on execution profiles of the system, how these potential faults

can impact software reliability. The idea is that a fault that never executes, never causes a fail-

ure. However, a fault that lies along the path of normal execution will cause frequent failures.

The majority of the testing effort should be spent finding those faults that are most likely to

cause failure.

The first step towards this testing paradigm is the identification of those modules that are

likely to contain the most faults. The objectives of the software test process are not clearly speci-

fied and sometimes not clearly understood. An implicit objective of a deterministic approach to

testing is to design a systematic and deterministic test procedure that will guarantee sufficient

test exposure for the random faults distributed throughout a program. By insuring, for example,

that all possible paths have been executed, then any potential faults on these paths will have had

the opportunity to have been expressed.

We must, however, come to accept the fact that some faults will always be present in the

code. We will not be able to eliminate them all. The objective of the testing process should be

to find those faults that will have the greatest impact on the safety/survivability of the code. Un-

der this view of the software testing process, the act of testing may be thought of as conducting

an experiment on the behavior of the code under typical execution conditions. We will deter-

mine, a priori, exactly what we wish to learn about the code in the test process and conduct the

experiment until this stopping condition has been reached.

To know the loci of probable faults in a complex software system is not a sufficient condi-

tion for reliability modeling. A software system may be viewed as a set of program modules that

are executing a set of mutually exclusive functions. If the system executes a functionality ex-

pressed by a subset of modules that are fault free, it will never fail. If, on the other hand, the

system is executing a functionality expressed in a subset of fault laden modules, there is a very

high probability that it will fail. Thus, failure probability is dependent upon the input data sets

which drive the system into regions of code (Le., functionalities) of differing complexities (Le.,

fault proneness).

-22-

Each software test suite implements a subset of functionalities. As each test is run to com-

pletion it generates a test execution profile which represents the results of the execution of one or

more functions. When a program begins the execution of a particular functionality we can de-

scribe this beginning as the start of a stochastic process. For the system, S, there is a call tree

that shows the transition of program control from one program module to another. This transi-

tion can be modeled as a stochastic process, where we define an indexed collection of random

variables {X, } , where the index t runs through a set of non-negative integers, t = 0,1,2, e . . repre-

senting the epochs of the process. At any particular epoch the software is found to be executing

exactly one of its M modules. The fact of the execution occurring in a particular module is a

state of the system. For a given software system, it may be found in exactly one of a finite num-

ber of mutually exclusive and exhaustive states, 1,2, M . In this representation of the system,

there is a stochastic process {X, } , where the random variables are observed at epochs

t = 0,1,2, and where each random variable may take on any one of the M integers, from the

state space A = 1,2,-.-M .

The probability that a particular module may execute is a conditional probability. Let Y be

a random variable defined on the indices of the set of elements of F. Then

pjk’ = Pr[X, = il Y = k] where k = 1,2,. . . , # { F } represents the execution profile for a set of

modules expressing function k exclusively. The distribution of the execution profile is multino-

mial for a software system consisting of more than two modules. In other words, for each func-

tionality, f , , there is an execution profile represented by the probabilities P : ~) , p:) , p3 , - e * , p , . (i) Uj

9. TEST EFFICIENCY

The test process for evolving software systems takes on a different measurement aspect

than that of new systems. Existing systems are continually being modified as a normal part of

the software maintenance activity. Changes will be introduced into this system based on the

need for corrections, adaptations to changing requirements, and enhancements to make the sys-

tem perform fasterhetter. The precise effects of changes to software modules in terms of num-

ber of latent faults is now reasonably well understood. From a statistical testing perspective, test

effort should be focused on those modules that are most likely to contain faults. Each program

-23-

module that has been modified, then, should be tested in proportion the number of anticipated

faults that might have been introduced into it.

Each program module is usually closely linked to a specific functionality. That is, as we

exercise a particular functionality a distinct execution profile emerges for that functionality. For

each functionality, some modules have a high probability of being executed, while other have a

low probability. Each test suite will express one or more of these functionalities. These execu-

tion profiles that generate from each test may be characterized by the probability distribution

P = { p ; I1 I i I n) for the test.

In the face of the evolving nature of the software system, the impact of a single test may

change from one build to the next. Each program module has a relative complexity value. This

relative complexity is a fault surrogate. That is, the larger value of the relative complexity the

greater fault potential that a module has. If a given module has a large fault potential, but limited

exposure (small profile value) then the functional complexity of that module is also small. Our

objective during the test phase is to maximize our exposure to the faults in the system. Another

way to say this is that we wish to maximize functional complexity, Cp , given by

where p f is the relative complexity of the j‘” module on the ifh system build and p y) is the test

profile of the k‘” test suite.

The initial phase of the efficient testing of changed code is to identify the functionalities

that will exercise the modules that have changed. Each of these functionalities so designated will

have an associated test suite designed to exercise that functionality. With this information it is

now possible to describe the efficiency of a test from a mathematical/statistical perspective. A

regression test is one specifically tailored to exercise the functionalities that will cause the

changed modules to be executed. A regression test will be efficient if it does a good Job of exer-

cising changed code. It is worth noting, however, that a regression test that is efficient on one

build may be inefficient on a subsequent build. The efficiency of a regression test, then, is given

by the following formula.

u=l

-24-

where m represents the cardinality of { M , u M } as defined earlier. In this case, z , is simply

the expected value for code churn under the profile P (k) .

This concept of test efficiency permits the numerical evaluation of a test on the actual

changes that have been made to the software system. It is simply the expected value of the fault

exposure from one release to another under a particular test. If the value of z is large for a given

test then the test will have exercised the changed modules. If the set of z 's for a given release is

low then it is reasonable to suppose that the changed modules have not been tested in proportion

to the number of probable faults that were introduced during the maintenance changes.

For practical purposes, we need to know something about the upper bound on test effi-

ciency. That is, if we were to execute the best possible test, what then would be the value of test

efficiency. A best regression test is one that will spend the majority of its time in the modules

that have changed the most from one build to the next. Let,

,=I

This is the total code churn between the i and j builds. To exercise each module in proportion to

the change that has occurred in the module during its current revision, we will compute this pro-

portion as follows:

This computation will yield a new hypothetical profile called the best projiZe. That is, it all

modules were executed in proportion to the amount of change that they had received we would

then theoretically have maximized our exposure to software faults that may have been intro-

duced.

Finally, we seek to develop a measure that will relate well to the difference between the

actual profile that is generated by a test and the best profile. To this end, consider the following

term, Ipi - 4 i 1 . This is the absolute value between the best profile and the actual profile. This

value has a maximum value of P and a minimum of 0. The minimum value will be achieved

when the module best and actual coverage are identical. A measure of the total coverage for a

set of modules (task or program) is then,

-25-

This coverage value has a maximum value of 10 when the best and the actual profiles are identi-

cal and 0 when there is a complete mismatch of profiles.

10. REGRESSION TEST RESULTS

The following discussion documents the results of the execution of 36 instrumented tasks

on two sequential builds of a large embedded software system. The perspective of this discus-

sion is strictly from the standpoint of regression testing. That is, certain program modules have

changed across the two sequential builds. The degree of this change is measured by code churn.

As has been clearly demonstrated on the Cassini spacecraft project, the greater the change in a

program module, the greater the likelihood that faults will have been introduced into the code by

the change. Each of the regression tests, then, should attempt to exercise these changed modules

in proportion to the degree of change. If a changed module were to receive little or no activity

during the test process, then we must assume that the latent faults in the module will be ex-

pressed when the software is placed into service.

All of the tasks in system were instrumented with our Clic 1 .O tool. This tool would permit

us to count the frequency of execution of each module in each of the instrumented tasks and thus

obtain the execution profiles for these tasks for each of the tests. The execution profiles show

the distribution of activity in each module of the instrumented tasks. For each of the modules,

the code churn measure was computed. The code churn values for each modules reflected the

degree of change of the modules during the most recent sequence of builds. The cumulative

churn values for all tasks are shown in the second column of Table 10. A churn value of zero

indicates that the module in question received no changes during the last build sequence. A large

churn value (>30) indicates that the module in question received substantial changes.

For the subsequent analysis, two profile values for each test will be compared. The actual

profile is the actual execution profile for each test. The best profile is the best hypothetical exe-

cution profile given that each module would be tested directly in proportion to its churn value.

That is, a module whose churn value was zero would receive little or no activity during the re-

gression test process.

From Table 10 we can seen that the A and B tasks have received the greatest change ac-

tivity. Associated with each task entry in this table is the Best Profile and the Actual Profile for

the task across all tests. The last row in the table gives the total values for code churn for all

-26-

tasks. The last two columns of this table contain the expected value for the code churn of the

task under the best profile and also under the actual profile. These columns are labeled Best

Coverage and Actual Coverage. The total expected value for code churn under the best profile is

13 1 I . The total expected value for code churn under the actual profile is 89. The tests spent a

disproportionate amount of time in modules that had not changed during this build interval. The

ratio of Total Actual Coverage to Total Best Coverage will yield a percent coverage index for the

task, for the system, or for the test depending on the granularity of the summary.

E

121.00 3.55E-02 2.79E-03 4.299957 0.337566
0.401035 4.697273 3.17E-03 3.71E-02 126.46 F
0.402485 6.67 1584 2.67E-03 4.43E-02 150.7 1

-27-

AH 0 O.OOE+OO 2.15E-04
AI 0 O.OOE+OO 4.57E-07
AJ 0 O.OOE+OO 2.85E-06

I I 3404.946) I
Table 10. Test Summary by '

0 0
0

.'ask

The change coverage index was computed by module for each task and then for the total

system. In Figure 1 , these coverage data are presented for the total system and Tasks A, B, D,

and E. For this figure, the values have been scaled onto the interval from 0 to 10. Had there

been perfect best coverage, the total value would have been 10. The coverage values for the A

and B tasks were the best out of all tasks. The E and D tasks, while having relatively high code

churn values, did not fair so well. The test coverage of the D task was typical of the total system,

shown as the rightmost entry in this figure.

Change Coverage Index

A B E D Total

Figure 1 - Change Coverage Index

We would now like to look within a task to see why the A and B tasks showed better cov-

erage than other tasks. The difference between the best profile and the actual profile is shown in

Figure 2. Here, if the line is negative, this means tRat the module in question was exercise well

out of proportion to the possible faults that it contained. On the other hand if the line is positive,

then the module in question was not exercise in proportion to the faults that it might contain. A

perfect line on this chart would be perfectly straight at zero on the profile axis.

-29-

Table 1 1 summarizes the performance of the best 24 of suite of 1 15 instrumented tests.

Only those tests whose performance index exceeded 10% of a theoretical total are shown here.

Again the performance index shown in this figure was computed by forming the ratio of the ac-

tual profile to the best profile for that test. It must be remember that not all tests will exercise all

modules. The performance index is computed only for those modules whose functionality was

included in the test. From a regression test perspective, we now know that we have a testing

problem. None of these tests do a really good job in executing the code most likely to contain

the newly introduced faults.

Test # Percent Test # Percent
Coverage Coverage

28
11.6 31 19.0 18
11.7 177 20.6

14
11.5 167 16.9 12
11.5 3 18.2

47
11.3 2 14.8 49
11.4 59a 14.8

156
10.8 38 13.1 20
10.9 1 13.2

39
10.6 33 12.2 9
10.7 I80 12.9

I 158 I 12.2 11 137 I 10.2 I
Table 11. Individual Test Summaries

10. SUMMARY

There is a distinct and a strong relationship between software faults and measurable soft-

ware attributes. This is in itself not a new result or observation. The most interesting result of

this current endeavor is that we also found a strong association between the fault injection proc-

ess over the evolutionary history of a software system and the degree of change that is taking

place in each of the program modules. We also found that the direction of the change had an ef-

fect on the number of faults inserted. Some changes will have the potential of introducing very

few faults while others may have a serious impact on the number of latent faults. Different num-

bers of faults may be inserted, depending upon whether code is being added to or removed from

the system.

-30-

In order for the measurement process to be meaningful, the fault data must be very care-

fully collected. In this study, the data were extracted ex post facto as a very labor intensive ef-

fort. Since fault data cannot be collected with the same degree of automation as much of the data

on software metrics being gathered by development organizations, material changes in the soft-

ware development and software maintenance processes must be made to capture these fault data.

Among other things, a well defined fault standard and fault taxonomy must be developed and

maintained as part of the software development process. Further, all designers and coders should

be thoroughly trained in its use. A viable standard is one that may be used to classify any fault

unambiguously. A viable fault recording process is one in which any one person will classify a

fault exactly the same as any other person.

Finally, the whole notion of measuring the fault injection process is its ultimate value as

a measure of software process. The software engineering literature is replete with examples of

how software process improvement can be achieved through the use of some new software de-

velopment technique. What is almost absent from the same literature is a controlled study to

validate the fact that the new process is meaningful. The techniques developed in this study can

be implemented in a development organization to provide a consistent method of measuring fault

content and structural evolution across multiple projects over time. The initial estimates of fault

insertion rates can serve as a baseline against which future projects can be compared to deter-

mine whether progress is being made in reducing the fault insertion rate, and to identify those

development techniques that seem to provide the greatest reduction.

Software test is not an intuitive process. Different modules are changed between builds. A

regression test that was satisfactory for one build might well be totally inadequate on a subse-

quent build. When a program is subjected to numerous test suites to exercise differing aspects of

its functionality, the test risk of a system will vary greatly as a result of the execution of these

different test suites. Intuitively - and empirically - a program that spends a high proportion of

its time executing a module set of high relative complexity will be more failure prone than one

driven to executing program modules with complexity values. Thus, we need to identify the

characteristics of test scenarios that cause our criterion measures of x and7 to be Parge.

The importance of this research is that we can now have a clearer understanding of how to

quantify and evaluate the effectiveness of the regression testing process. For this study, we were

not able to perform an analysis of test effectiveness on the same system for which we estimated

the rate of fault insertion. We are currently working with NASA and commercial software de-

c -*

(.

-3 1-

velopment efforts to apply both types of analysis to the same project, with the goal of improving

our ability to estimate the number of faults remaining in the system after the completion of a test

sequence and allocate them among those portions of the system that have changed since the last

increment.

ACKNOWLEDGEMENTS

The research described in this paper was carried out at the University of Idaho and the Jet Pro-

pulsion Laboratory, California Institute of Technology. Portions of the work performed at JPL

were sponsored by the U. S. Air Force Operational Test and Evaluation Center (AFOTEC) and

the National Aeronautics and Space Administration’s IV&V Facility.

REFERENCES

[Chi1921 R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, M.-Y. Wong,
“Orthogonal Defect Classification - A Concept for In-Process Measurement”, IEEE
Transactions on Software Engineering, November, 1992, pp. 943-946.

[Ha1771 M. H. Halstead, Elements of Software Science. Elsevier, New York, 1977

[IEEE83] “IEEE Standard Glossary of Software Engineering Terminology”, IEEE Std 729-
1983, Institute of Electrical and Electronics Engineers, 1983.

[IEEE88] “IEEE Standard Dictionary of Measures to Produce Reliable Software”, IEEE Std
982.1-1988, Institute of Electrical and Electronics Engineers, 1989.

[IEEE93] “IEEE Standard Classification for Software Anomalies”, IEEE Std 1044-1993,
Institute of Electrical and Electronics Engineers, 1994

[Kh0~90] T. M. Khoshgoftaar and J. C. Munson , “Predicting Software Development Errors
Using Complexity Metrics,“ IEEE Journal on Selected Areas in Communications 8,
1990, pp. 253-261.

[Khos92] T. M. Khoshgoftaar and J. C. Munson “A Measure of Software System Com-
plexity and Its Relationship to Faults,” In Proceedings of the 1992 International
Simulation Technology Conference, The Society for Computer Simulation, San Di-
ego, CA, 1992, pp. 267-272.

[Muns90] 9. C. Munson and T. M. Khoshgoftaar “Regression Modeling of Software Quality:
An Empirical Investigation,” Journal of Information and Sofmare Technology, 32,
1990, pp. 105-1 14.

-32-

[Muns90a] J. C. Munson and T. M. Khoshgoftaar “The Relative Software Complexity Met-
ric: A Validation Study,” In Proceedings of the Software Engineering 1990 Confer-
ence, Cambridge University Press, Cambridge, UK, 1990, pp. 89-102.

[Muns92] J. C. Munson and T. M. Khoshgoftaar “The Detection of Fault-Prone Programs,”
IEEE Transactions on Software Engineering, SE-18, No. 5, 1992, pp. 423-433.

[Muns95] J. C. Munson, “Software Measurement: Problems and Practice,” Annals of Software
Engineering, J. C. Baltzer AG, Amsterdam 1995.

[Muns96] J. C. Munson, “Software Faults, Software Failures, and Software Reliability Model-
ing”, Information and Software Technology, December, 1996.

[Muns96a] J. C. Munson and D. S. Werries, “Measuring Software Evolution,” Proceedings of

[Muns97]

[Niko97]

[Niko98]

[SETL93]

the 1996 IEEE International Software Metrics Symposium , IEEE Computer Soci-
ety Press, pp. 41 -5 I .

J. C. Munson and G. A. Hall, “Estimating Test Effectiveness with Dynamic Com-
plexity Measurement,” Empirical Sof iare Engineering Journal. Feb. 1997.

A. P. Nikora, N. F. Schneidewind, J. C. Munson, “IV&V Issues in Achieving High
Reliability and Safety in Critical Control System Software”, proceedings of the In-
ternational Society of Science and Applied Technology conference, March 10-1 2,
1997, Anaheim, CA, pp 25-30.

A. P. Nikora, “Software System Defect Content Prediction From Development
Process And Product Characteristics”, Doctoral Dissertation, Department of Computer
Science, University of Southern California, May, 1998.

“User’s Guide for UX-Metric 4.0 for Ada”, SET Laboratories, Molino, OR, 0 SET
Laboratories, 1987- I 993

